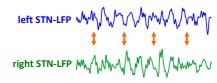
Beyond volume conduction: toward genuine functional connectivity between bilateral basal ganglia

FU Hohlefeld¹, C Huchzermeyer², J Huebl², G-H Schneider³, C Brücke², T Schönecker², AA Kühn², G Curio^{1,4}, VV Nikulin^{1,4}

1) Neurophysics Group, Department of Neurology, Charité University Medicine Berlin; Germany; 2) Motor Neuroscience Group, Department of Neurology, Charité University Medicine Berlin, Germany; 3) Department of Neurosurgery, Charité University Medicine Berlin, Germany; 4) Bernstein Center for Computational Neuroscience, Berlin, Germany

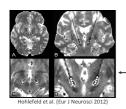
Background - Parkinson's Disease (PD)

- bilateral effects of unilateral deep brain stimulation (DBS) suggested neural interactions between the left and right $hemispheres ^{[1]} \\$
- demonstration of interhemispheric coherence ("functional connectivity") in local field potentials (LFP) recorded from left and right subthalamic nuclei (STN) in beta oscillations (approx. 10–30 Hz)^[2–4], modulation by levodopa medication^[2]
- no direct anatomical connections between bilateral STN[2,4]
- functional distinction between low and high beta oscillations^[2,5]


Challenges

- excluding severe artifacts due to volume conduction, especially for close recording sites (like both STN)
- clinical relevance regarding motor symptoms?

Research questions^[6]


- "genuine" (ie, no volume conduction) interhemispheric coherence in LFP recorded from left and right STN (10–30 Hz)?
- relation between motor symptoms and interhemispheric STN-LFP coherence, specifically in low beta oscillations (10-20 Hz)?
- frequency-specific effects of levodopa medication (OFF vs. ON)?

interhemispheric neural synchronization?

Patients and recordings^[6]

- patients with idiopathic PD (n=8; 4 males), mean age 59.5 yrs; OFF and ON levodopa
- bipolar LFP, resting state (14 min)
- channel rejection if outside left or right nucleus

bipolar channel rejection[7,8]..

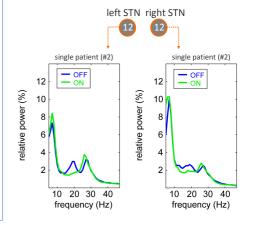
... if both contacts were outside the STN

left right STN

10-20, 21-30 Hz

mean (i)COH_d within beta bands

max. n=9 bipolar connections

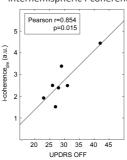

- imaginary part of coherency^[9,10] (insensitive to volume conduction); time-lagged synchronization
- standard coherence

estimating (i)coherence detectability^[9,10]

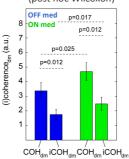
• jackknife normalization[9] iCOH_d = |iCOH/STD(iCOH_jn)| > 2.58 indicates p< 0.01

spatial average approach

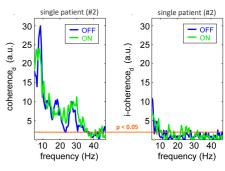
• across available connections (iCOH_{dm}) robustness to data heterogeneity


Results[6]

• mean N of significant connections with p<0.01:

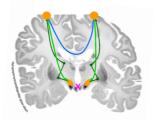

COH_{dm} 79 % iCOH_{dm} 30 % shuffled 0%

- increased severity of motor symptoms (UPDRS) OFF medication correlated with increased interhemispheric i-coherence (10-20 Hz oscillations); no correlation with standard coherence
- levodopa medication associated with increased interhemispheric connectivity (21-30 Hz oscillations)


single patients correlation 10-20 Hz, OFF medication, interhemispheric i-coherence

grand-average (n=8) Friedman analysis, 21-30 Hz (post hoc Wilcoxon)

interhemispheric interhemispheric 12 standard coherence i-coherence



Conclusions^[6]

- genuine interhemispheric coherence (iCOH) in STN-LFP (no volume conduction)
- clinical relevance (correlation with motor scores): advantage using iCOH and a spatial average
- functional distinction high vs. low beta oscillations, relevance for motor symptoms (10-20 Hz)
- long-distance interhemispheric synchronization might be functional evidence for bilaterally effective unilateral DBS

Routes for interhemispheric STN-connectivity?

- cortico-subcortical route (corpus callosum) and/or
- subcortico-cortical-subcortical route (thalamus, CC)

interhemispheric (i)coherence 16 (a.u.) 12 10 i)coherence 8 15 20 25 30 35 40 45 frequency (Hz)

grand-average (n=8)

References

[1] Brun et al. (J Neurophysiol 2012) [2] Little et al. (PloS One 2013)
[3] Silchenko et al. (J Neurosci Methods 2010)
[4] De Solages et al. (Exp Neurol 2010) [5] López-Azcárate et al. (J Neurosci 2010) [6] Hohlefeld et al. (submitted)

[7] Schönecker et al. (Am J Neuroradiol 2009)

[8] Hohlefeld et al. (Eur J Neurosci 2012) [9] Nolte et al. (Clin Neurophysiol, 2004) [10] Hohlefeld et al. (Neuroscience, 2013)

Contact

friederike.hohlefeld@gmx.de Neurophysics Group, Department of Neurology Hindenburgdamm 30, 12200 Berlin Charité – Universitätsmedizin Berli

Acknowledgements

Supported by the German Research Foundation (DFG) grant # KFO 247.